145^2=x(81+x)

Simple and best practice solution for 145^2=x(81+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 145^2=x(81+x) equation:



145^2=x(81+x)
We move all terms to the left:
145^2-(x(81+x))=0
We add all the numbers together, and all the variables
-(x(x+81))+145^2=0
We add all the numbers together, and all the variables
-(x(x+81))+21025=0
We calculate terms in parentheses: -(x(x+81)), so:
x(x+81)
We multiply parentheses
x^2+81x
Back to the equation:
-(x^2+81x)
We get rid of parentheses
-x^2-81x+21025=0
We add all the numbers together, and all the variables
-1x^2-81x+21025=0
a = -1; b = -81; c = +21025;
Δ = b2-4ac
Δ = -812-4·(-1)·21025
Δ = 90661
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-\sqrt{90661}}{2*-1}=\frac{81-\sqrt{90661}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+\sqrt{90661}}{2*-1}=\frac{81+\sqrt{90661}}{-2} $

See similar equations:

| 5=−1w | | -4=-3x+10 | | -7(x+4)=-9x+22 | | 2(5^4x)=260 | | 3x+4(-1)=15 | | -7+8y=9 | | 5+2q≥=9 | | 7n+15=253 | | 3(-3)+4y=15 | | x6+1=2 | | 5/6x-2/3=-9 | | 273=64-u | | -1n=-4 | | ⅔(x-6)=18 | | 37m^2–22m=0 | | 184-v=269 | | •¥56-4c-4c=27 | | –15+3c=3 | | c/2-14=26 | | -3x+4=-2x-6 | | 6(3-x)=21+15 | | 6x-5+2x=180 | | x+50=52 | | O=π*2*r | | x/2-9=26 | | x/4=-20* | | 18x•170=360 | | –1.9=j−4.9–2 | | -3x+4=-2-6 | | 3m+5÷2=10 | | 216^x=6^x^+10 | | x+31=43 |

Equations solver categories